
i0

i1

i2

i3

i4

i5

i6

i7

o0

o1

o2

o3

o4

o5

o6

o7

0.0

0.1

1.0

1.1

2.0

2.1

Figure 1: Packaging of a single board of a 4-ary 3-fly with 6 nodes per board.

Solutions to Homeworks 1, 2, and 3

2-1. Group switches 0.0,1.0,1.0,1.1,2.0, and 2.1 on a single board and similarly
for the remaining groups of six switches. This gives the same number of chips
and boards and the signal constraints of the boards are not violated. As shown
in Figure 1, five cables are required for each pair of boards. There are 8 boards
and therefore 20 cables. Thus, the total cost of the system is 48(200) + 8(200) +
20(50) = $12,200.

3-9. (a) Six. (b) Maximum is six, minimum is four. For example, the permutation
[3142] gives a diameter of four.

4-2. For upper switch of the first stage, input 00002 sends to output 00002 (using
the first output port of the switch), 00012 sends to 10002 (using the third output),
00102 sends to 01002 (using the second output), and 00112 sends to 11002 (using
the forth output). The same pattern is repeated for each first stage switch and all
middle channels are equally loaded with γmax = 1. So, the throughput is 100% of
capacity.

4-3. Choose k using

k =
⌈

NBn

4Bs

⌉
= 32.

Since N = 1024, this gives n = 2. The corresponding channel width is

w = min
(

Wn

2k
,
2Ws

N

)
= 2 bits.

Given f = 1GHz,

Θideal =
wf

γ
= 2 Gbits/sec.

1

Zero-load latency is then

T0 =
L

b
+ Havgtr =

512
2

+ 30(3 + 1) = 286 ns.

5-3.
k n wn ws w Θideal

1 256 96 1500 96 3
2 16 48 93.75 48 24
4 4 24 23.4375 23 46
8 2 12 11.71875 11 44

The best throughput is achieved on a 4-ary 4-cube. Each node has 4(4)(23) = 368
pins, so given the board constraint of 512 pins, the only packaging option is one
node per board.

6-2. For k = 3, an (n, n, n) Clos network has n2 ports. Then for k = 5, build a
(n, n, n2) Clos, which has n3 ports. This pattern continues and in general a k stage
Clos (odd k) can have n(k+1)/2 ports.

7-1. First, to minimize cost only, we design for average-case bandwidth. Thus,
bT = 500Mbps and bN = MbT . Therefore, each concentrator has a pin bandwidth
of 2MGbps. Each node has a MGbps connection to its concentrator and a net-
work bandwidth of 4nb. The network channel width must be designed to support
uniform traffic at the average rate, with BB = (0.5)N/2 = 1.024Tbps. Thus,
b = 1024/4kn−1 = 1024kM/4(4096) = kM/16Gbps. This gives a pin band-
width of nkM/4 + M = M(nk/4 + 1) for each node. The total pin bandwidth of
the network is then N(3+nk/4) — concentration makes no difference in reducing
cost for a network designed for the average case. Therefore, concentration can be
removed and any combination of n and k that minimizes nk (hop count) and meets
the chip bandwidth constraint gives minimum cost (e.g. n = 6 and k = 4, giving a
node bandwidth of 7Gbps).

If we want to also avoid any extra serialization latency, bT = 10Gbps, bN =
max(10, M/2)Gbps, and b = 10Gbps. The maximum concentration is M = 4
and requires 100Gbps per concentrator chip. Choosing k = 32 and n = 2 gives
a bisection requirement of 10(4N)/k = 10(4)(1024)/(32) = 1.28Tbps with b =
10Gbps channels. The node bandwidth requirement is 10(4n + 2) = 100Gbps.

8-1. (a) Deterministic. It’s shortest ignoring any contention. (b) Deterministic.
Uniform is already load balanced and any additional load balancing effort will
only degrade performance. (c) Adaptive. While weighted will do well, it won’t be
able to compete with adaptive on patterns with high locality.

2

8-6. This is direction order routing: route in the increasing directions (+x, +y, and
+z) before the negative directions.

8-7. Consider a source sending to it’s neighbor in the positive y direction. If the
channel directly connecting these nodes is faulty, dimension order routing is forced
to route the long way around in the negative y direction to reach the node. However,
in direction order routing, a sidestep in +x, followed by a step in +y, and ending
with a hop in −x reaches the destination in only 3 hops.

9-2. First we show a lower bound on the worst-case of all minimal routing al-
gorithms by considering a 1-d tornado pattern: each node (i, j) sends to ((i +
�k/2�) mod k, j). Because there is only one minimal path between each source-
destination pair for this pattern, the load is the same for all minimal algorithms and
is �k/2�. Considering e-cube routing, for any channel in a row (column) of the
torus, only sources (destinations) in that row can add load to that channel. More-
over, only half of the nodes in each row (column) can load a particular channel —
the other half sends the other way around the ring because the algorithm is mini-
mal. Therefore, the worst-case of e-cube is at most k/2. This is roughly equal to
the lower-bound, thus e-cube is optimal (within an additive factor). However, this
argument does not extend to meshes with n > 2 because sources (destinations)
outside the row (column) can place load on the channels in that row (column).

10-1. For the transpose pattern, it’s possible for minimal routes to be selected such
that the channel load is exactly one. Since the minimal adaptive routing algorithm
is in the steady-state, we assume this is the case. Minimal oblivious loads the
center channels of the mesh the most heavily. Routing from (1,2) to (2,1) adds 1/2
of a unit load to the east going channel of node (1,1) (assuming the origin is in
the northwest corner). Routing from (0,2) to (2,0) contributes another 1/6 load and
routing from (1,3) to (3,1) adds 1/3. Finally routing from (0,3) to (3,0) adds 1/8
load. The total load is therefore 1/2 + 1/3 + 1/6 + 1/8 = 9/8, which is greater
than the minimal adaptive algorithm’s load.

11-2. (a) A RAM table would require an entry for each destination or 64 entries.
(b) A CAM table can be optimized to far fewer entries:

CAM Address Direction

00X XXX W
010 XXX W
1XX XXX E
011 0XX N
011 101 S
011 11X S
011 100 X

3

R TD D D D

R TD D D D

R TD D D D

A

A

A
C

ha
nn

el
0

1

2

R TD D D D

R TD D D D

R

N

N

C
h

an
ne

l

0

1

2

N

TD D D D

TD D D D

TD D D D

(a)

(b)

Figure 2: Optimistic circuit switching. (a) A successful optimistic transmission of
the data with an acknowledgment to the source. (b) A failed transmission, the nack
received by the source indicates the packet must be resent.

12-2. The minimum timeout is the latency of the forward traveling packet’s header
plus the latency of the acknowledgment. Serialization latency is already accounted
for by starting the timeout once the entire packet has been sent from the source.
Thus, the timeout is:

2Hmax + 1

assuming one flit time to “think” and tr is equal to a one flit time.

12-4. As shown in Figure 2, optimistic circuit switching can potentially reduce the
idle time of the channels by a round-trip delay.

14-1. (a) This not deadlock-free because all 8 turns are allowed. (b) The rules
eliminate the +y to +x turn and the −x to −y turn. Using the turn model, this is
enough to ensure deadlock freedom. (c) While no single route can create a cycle,
no clockwise (right) turns have been disallowed and therefore cycles can be created
between several packets.

14-4. To stay within the constraints of the C × N → C routing relation, the
injection channel at the source of a packet can be used to differentiate packets and
better balance load. For example, when routing a packet from 4 → 2, it can be
injected on VC 1 to spread load. Likewise, shifting the 3 → 2 and 1 → 2 routes to
VC 1 helps balance load. More balance can be achieved by routing from 2 → 3 on
VC 0.

14-8. One approach is to use an increasing VC for each dimension traversed. So,
for example, an XYZ traversal pattern would use VC 0 for X, VC 1 for Y, and
VC 2 for Z. Similarly, an YZX traversal uses 0 for Y, 1 for Z, and 2 for X. This

4

is deadlock-free because there are no dependencies between dimensions within a
VC and the VC numbers always increase — there is no possibility for a cycle.
Another approach is to increment the VC (starting from 0) when you turn from a
negative direction to a positive direction. Within a VC, positive going channels can
be enumerated with their distance from the origin and negative going channels can
be enumerated with |C| minus their distance from the origin. This prevents cycles
within a VC. Since the VC’s are only incremented, no inter-VC dependencies can
introduce cycles. This scheme requires �n/2� + 1 virtual channels.

5

